Choosing the “right” visualization: A diversity, equity, and inclusion example

When we talk about Diversity, Equity and Inclusion (DEI) efforts, we frequently turn to the data to see how we’re doing relative to our own internal goals, and, as possible, how our efforts and relative success rates compare to those in our local communities and others in our industries. That is, we typically talk and think in terms of benchmarks and progress towards a target percentage. But we don’t just need to wrangle and analyze the data. We also need to communicate the findings of the analysis so that we can figure out what to do next, and this is where choosing the right visualization comes in. In this post, I discuss how different visualization choices enable different understandings of the data, and different conversations and decisions around the data.

Read More

Vision to Action: Turning ideas into actionable and measurable steps

It can be hard to figure out how to turn big picture ideas and goals into actionable and trackable steps. For many things, the “figuring out” lies in a mixture of clarity, and then reframing and rephrasing. Here we take a monetary target and some other information from a business model, and turn it into something that’s doable, measurable, and actionable. If you’re stuck at this part of the process, this post might help.

Read More

Hone strategy: Analyzing customer reviews and other open-ended feedback

Star ratings are an easy way to measure customer sentiment. But if that’s where you stop, you’re missing out on some rich data. Chances are that you’re sitting on an untapped source of data – the text of customer reviews and other open-ended feedback.

Why is it untapped? It’s complex, and it can be hard to know where to start, and hard to know what to do with all that new information you’ve just untapped.

Why is it worth the effort? It can give you insights that your number data cannot, and you can learn more about what your numbers mean. Even better, it can help you identify the things that will let you address multiple issues at once, because you’ll have more granular “why” data.

I cover two frameworks – sentiment analysis and thematic analysis – to get you started on tapping into this rich text data and figuring out what to do about it. If you’re into jargon, what I’m talking about is performing qualitative analysis on unstructured data.

Read More

Decision Log: A tool to turn your decision-making into auditable data

When it comes to your decisions and your data, one tool I like to use is called a Decision Log.

By recording your important or ambiguous decisions in this format – the game changers, the ones where your decision-makers disagree, the ones where it’s not so clear what the best decision is or what the influencing factors might be – you provide for yourself a means of auditing, reflecting on, and redirecting yourself towards your goals by getting really clear on how you’re using data, both in the moment of decision-making and as part of post-process analysis.

This can be particularly useful for times when the result of your decision was unexpected, you want to repeat results, or you want to better understand the context in which you’re working.

Read More

Data classification: Why it matters to business strategy

You might have heard about the concept of classification under different names like ‘segmentation,’ ‘categorization,’ or ‘hashtags.’ Classification is basically the process of chunking up or organizing your data into different groups or under different labels so that you can use it to better support your business strategy.

In practice, this enhances your ability to do things like target email marketing to a specific demographic, court different types of non-profit donors, and check on your business pipeline by a particular product or salesperson. How?

Read More